[Time Dependence]

(Chapter 1.10 of Elements)

Because this is an initial-value problem, it is appropriate to invoke the Laplace transform, in
which s is the time-related Laplace transform variable,
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Assuming that the initial flux is zero and that the source is a delta function at time ¢ = 0,
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The transformed diffusion equation is
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We already have the solution of this equation. Taking the result for a specific source energy and

replacing the absorption cross section X, (E) — v(SE) so that
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Here, v, =v(Ey)and v =v(E'). Although s is a complex number, it is independent of E, and if
we assume that =, (E') is constant, as is reasonable for epithermal energies, the integral is do-

able,
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and we have the simple result
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The singularities of (E,s) in the complex s-plane determine the form of the inverse transform
(consult a table of Laplace transform/function pairs):
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Source neutrons at energy E, disappear rapidly with a time constant . 21 . Neglecting these,
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noting that E—Z = VF and approximating (v, -v)=v, when v<<v,, the final result is the
slowing-down time distribution for hydrogenous moderators,

S
Q(E1) = 5 (VE it exp (-, 1)U (E < Ey). (14)



This slowing-down time distribution is another part of the basis for the I-C pulse shape function
(described in Chapter 2 of Elements).

It is easy to obtain the time-integrated flux ¢(E) = f @(E,t)dt from the Laplace transform:
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which we obtained earlier for the case of slowing-down in an infinite medium of hydrogen with
no absorption.





