
	  

[SANS optimization] 
(Chapter 5.4.1 in Elements) 
 
SANS Optimization 
 
Here we outline the procedure for optimizing the geometric arrangement of SANS instruments.  
Such analysis is essential for instrument design.   But on a day-to-day or more frequent basis, 
changes in operating conditions to span different Q-ranges at different resolutions in steady-
source instruments need to follow optimization guidelines.  Mildner and Carpenter (1984) have 
carried this out for several cases: small-angle Bragg diffraction and axially symmetric small-
angle scattering with constrained Q, for a given Q resolution and a fixed total flight path of the 
diffractometer. We reiterate their analysis for the case of fixed scalar Q, in the case of cylindrical 
component geometry. Subject to given resolution, the counting rate in the detector given 
previously is to be maximized, and following Mildner and Carpenter, we rewrite combining 
constant parameters into one overall constant,  
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Resolution 
 
The variance of the scattering-angle resolution-broadening function is 
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where  is the width of a ring of active area on the detector (adapted from Mildner and 
Carpenter).  The overall Q-resolution, including the effect of finite wavelength resolution, is 
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where the variance of the wavelength distribution is 
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The velocity selector typically used in steady-source instruments produces a triangular 
wavelength distribution with FWHM  (see Chapter 9.1.1).  Here,  is the FWHM of the 
angular distribution of neutrons in the beam incident on the rotor, assumed to be rectangular.  
Experimenters usually select the wavelength by varying the rotor angular velocity .  Then 

 and  are constant, built-in features of the instrument.  For simplicity in the following 

discussion of optimization, we assume that the wavelength distribution is triangular with width 
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so that 
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where k = 2π/λ.  
 
Perhaps it is not usually done, but operators could vary the mean selected wavelength by tilting 
the rotor axis (but never when the rotor is running), changing the wavelength but not the 
wavelength resolution if  is fixed (see Chap. 9.1.1 in Elements).  
 
Accounting for the penumbra size and the penumbral broadening of the scattered neutrons, the 
minimum accessible Q is 
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Optimization process 
 
The optimization process employs the procedure of Lagrange multipliers, a method for 
maximizing or minimizing a function of several variables subject to constraints, that is, side 
conditions, which represent fixed relationships among the variables.  Most textbooks on 
Advanced Calculus discuss the method. 
 
Our problem is to find values of  (seven variables) that maximize 
CD. The resolution  is fixed. The total instrument length is given: , in which  
does not include the lengths of components upstream from the collimator entrance. And 

. These represent three side conditions, that is, constraints. The process requires seven 

gradient equations, shown later.  For convenience we write the side conditions as 
 
  f = 0, g = 0, and h = 0.                 (5-‐SO9) 
 
The resolution constraint is 
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for a triangular wavelength distribution.  For a square distribution, the fourth term would be  
 .                 (5-SO11) 

The length constraint is
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and the wave vector constraint is 
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Here,  and .  The µs are Lagrange multipliers, one for each side condition, 
introduced to facilitate the optimization. Here, CD, f, g, and h are functions of the variables and 

, , and Q are fixed, given, values.  There are seven gradient equations, one for each 
variable, and three side conditions, with seven variables and three multipliers to be determined. 
Fortunately, all the functions and derivatives are simple.  Following, the gradient equations are 
on the left and the explicit relationships are on the right: 
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Eliminating  from the first two equations yields the relationship 
 
 

 
that is,
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meaning, in geometric interpretation, rays across the extremes of the apertures converge at 
distance , the location of the detector.  This is a universal feature of the double-pinhole 
collimation arrangements for all cases in Mildner and Carpenter, vector-  (i.e., Bragg 
scattering) and scalar Q with fixed R or fixed Q. 
 

g = Lc + LD ! Lo = 0,

h = R
LD

!
Q

k
= 0.

1

L'
=
1

L
c

+
1

L
D

k =
2!
"

!Q
2
L
o

!CD

!R1
= !1

! f

!R1
+ !2

!g

!R1
+ !3

!h

!R1
,

!CD

!R2
= !1

! f

!R2
+ !2

!g

!R2
+ !3

!h

!R2
,

!CD

!Lc
= !1

! f

!Lc
+ !2

!g

!Lc
+ !3

!h

!Lc
,

!CD

!LD
= !1

! f

!LD
+ !2

!g

!LD
+ !3

!h

!LD
,

!CD

!"R
= !1

! f

!"R
+ !2

!g

!"R
+ !3

!h

!"R
,

!CD

!R
= !1

! f

!R
+ !2

!g

!R
+ !3

!h

!R
,

!CD

!"#
= !1

! f

!"#
+ !2

!g

!"#
+ !3

!h

!"#
,

!

!CD
R1

= "1
6R1

2Lc
2
,

2CD

R2

= "1
6R2

L!
2
,

2 CD

Lc

= "1
6R

2

Lc
3
+
6R2

2
Lc + LD

LDLc
3

Lc
3 " "2,

2CD

LD

= "1 2
#R

2

LD
3
+ 2
R
2

LD
3

#$
$

2

+ 6
R2
2

LcLD
3
Lc + LD

" "2 + "3
R

LD
2
,

CD

#R
= "1

2#R

LD
2
,

CD

R
= "1

2R

LD
2

#$
$

2

+ "3
1

LD

,

CD

#$
= "12

R
2

LD
2

#$

$
2
.

µ
1

R1

R2
= L

c

1
L
c

+ 1
L
D

=
L
c
+ L

D

L
D

,
R1

L
c
+ L

D

=
R2

L
D

,

L
D

Q



	  

We leave solving the remaining equations as an exercise to the reader, which may be a little 
daunting because they are nonlinear in the variables, although they are, after all tractable. The 
solution yields the optimum conditions:  
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The optimized angular resolution, in terms of its standard deviation, is then 
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and the minimum accessible Q , for the optimized parameters, is 
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The optimization conditions for vector Q (Bragg scattering) measurements are slightly different 
and the radial averaging is then inappropriate.  The dedicated student may wish to work out the 
results, which are recorded in Mildner and Carpenter. 
 
Reference 
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